Nowadays, power electronic technology is widely affecting peopleâ??s daily work and life. However, there are still many problems in\nthe current power supply research. When the fault information of power transformer is not complete or there is some ambiguity\nor even the information is lost, it will largely lead to the conclusion and correct conclusion of fault diagnosis. In this case, the fuzzy\ntheory is applied to the fault diagnosis of shunt capacitor, and the fuzzy fault diagnosis systemof shunt capacitor is studied. At the\nsame time, a map-based fault diagnosis system is proposed. In this paper, the cloud computing technology is introduced into the\ndeep learning and compared with SVM and DBN algorithm. The research results of this paper show that the accuracy of fuzzy\ndiagnosis results is 94%, 84%, 90%, 80%, 83%, and 70%, respectively, which shows that the model diagnosis reliability is relatively\nhigh. Among the three algorithms, MR-DBN overall detection rate is higher and the time-consuming is lower than the other two\nmethods. The diagnostic accuracy and misjudgment rate of DBN are as follows: 96.33% and 3.90%. The diagnosis accuracy and\nmisjudgment rate of SVM are as follows: 96.40% and 3.83%. The diagnostic accuracy and misjudgment rate of MR-DBN are,\nrespectively, 99.52% and 0.57%. Compared with the other two methods, MR-DBN has the highest diagnostic accuracy and the\nlowest error rate, which to a large extent indicates that MR-DBN algorithm has higher diagnostic accuracy and has greater\nadvantages and reliability in power supply diagnosis and identification. It not only improves the accuracy of power capacitor fault\ndiagnosis and identification but also provides a new method for the application of power capacitor fault research\nand development.
Loading....